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We investigate the probability density of rescaled sums of iterates of deterministic dynamical systems, a
problem relevant for many complex physical systems consisting of dependent random variables. A central limit
theorem �CLT� is valid only if the dynamical system under consideration is sufficiently mixing. For the fully
developed logistic map and a cubic map we analytically calculate the leading-order corrections to the CLT if
only a finite number of iterates is added and rescaled, and find excellent agreement with numerical experi-
ments. At the critical point of period doubling accumulation, a CLT is not valid anymore due to strong temporal
correlations between the iterates. Nevertheless, we provide numerical evidence that in this case the probability
density converges to a q-Gaussian, thus leading to a power-law generalization of the CLT. The above behavior
is universal and independent of the order of the maximum of the map considered, i.e., relevant for large classes
of critical dynamical systems.
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The central limit theorem �CLT� is an extremely important
concept in probability theory and it also lies at the heart of
statistical physics �1,2�. It basically says that the sum of N
independent identically distributed �IID� random variables,
rescaled with a factor 1 /�N, has a Gaussian distribution in
the limit N→�. The CLT plays a crucial role in explaining
why many stochastic processes that are of relevance in phys-
ics, chemistry, biology, economics, etc., are Gaussian, pro-
vided they consist of a sum of many independent or nearly
independent contributions. CLTs are also of fundamental im-
portance to “derive” statistical mechanics from first prin-
ciples: If a CLT is valid for the driving forces in a many-
body system, it is easy to proceed to the formalism of
statistical mechanics via the Langevin and Fokker-Planck ap-
proaches.

What is less known in the physics community but well
known in the mathematics community is the fact that there
are also CLTs for the iterates of deterministic dynamical sys-
tems. The iterates of a deterministic dynamical system can
never be completely independent, since they are generated
by a deterministic algorithm. However, if the assumption of
IID is replaced by the weaker property that the dynamical
system is sufficiently strongly mixing, then various versions
of CLTs can be proved for deterministic dynamical systems
�3–9�. It should be kept in mind that the mixing property just
means asymptotic statistical independence for large time dif-
ferences.

In this Rapid Communication we investigate in detail the
central limit behavior of deterministic systems. We are inter-
ested in two questions that are of fundamental importance for
the foundations of statistical mechanics: �i� Suppose a CLT is
valid for a deterministic dynamical system for N→�: what
are the leading-order corrections to the CLT for large but
finite N? �ii� Suppose the dynamical system does not satisfy
a CLT because it is not sufficiently mixing: what are typical

probability distributions that one obtains for these types of
systems in the limit N→�?

The above questions are very relevant to understand the
physics of complex systems in general. First of all, any
physical system always consists of a finite number N of con-
stituents rather than an infinite one. Hence finite-N correc-
tions to the CLT can be potentially important for small sys-
tems. Second, the dynamics of critical systems usually
exhibits strong correlations. These imply that an ordinary
CLT cannot be valid. In such cases it is important to know
what type of distributions replace the usual Gaussian limit
distributions.

In full generality, the above two problems are very diffi-
cult to deal with. Hence there is the need to start with simple
model systems where some statements can be rigorously
proved. Our main example in the following is the logistic
map. For the fully developed chaotic state of this map, a CLT
has been proved �3�. We will explicitly calculate leading-
order corrections to the Gaussian limit case if a finite number
N of iterates is added and rescaled with 1/�N. Moreover, we
will provide evidence that at the critical point of period dou-
bling accumulation, where a CLT is not valid due to strong
correlations between the iterates, a suitably rescaled sum of
iterates appears to generate distributions with power-law
tails, which are well approximated by q-Gaussians. These
distributions are known to play an important role in general-
ized versions of statistical mechanics �10–12�. Although our
results are derived for the special example of the logistic
map, we will show that they are universal, i.e., applicable to
entire classes of deterministic dynamical systems.

To start with, let us consider a d-dimensional mapping of
the form

xi+1 = T�xi� �1�

on some d-dimensional phase space X. If T is sufficiently
strongly mixing �see �3,5,8,9� for technical details�, one can
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prove the existence of a CLT. This means the probability
distribution of

y ª
1

�N
�
i=1

N

f�xi� �2�

becomes Gaussian for N→�, regarding the initial value x1
as a random variable. Here f :Rd→Rk is a suitable smooth
function with vanishing average which projects from the
d-dimensional phase space to a k-dimensional subspace. If
d=k=1, the variance �2 of this Gaussian is given by �8�

�2 = �f�x0�2� + 2�
i=1

�

�f�x0�f�xi�� . �3�

Here �¯� denotes an expectation formed with the natural
invariant density of the map T.

As an example to illustrate these general results, let us
consider the logistic map

xi+1 = T�xi� = 1 − axi
2 �4�

on the interval X= �−1,1�. For a=2 the system is �semi�con-
jugated to a Bernoulli shift and strongly mixing. The natural
invariant density is

�x�x� =
1

��1 − x2
. �5�

Ergodic averages of arbitrary observables A are given by

�A�x�� = 	
−1

1

��x�A�x�dx . �6�

The average �x� vanishes. For the correlation function one
has

�xi1
xi2

� =
1

2
�i1,i2

. �7�

Due to the strong mixing property, the conditions for the
validity of a CLT are satisfied for a=2. This means the dis-
tribution of the quantity

y ª
1

�N
�
i=1

N

�xi − �x�� �8�

becomes Gaussian for N→�, regarding the initial value x1
as a random variable with a smooth probability distribution.
For the variance of this Gaussian we obtain from Eqs. �3�
and �7� the value �2= 1

2 �choosing f�x�=x�. The above CLT
result is highly nontrivial, since there are complicated
higher-order correlations between the iterates of the logistic
map for a=2 �see �13� for details�. This means the ordinary
CLT, which is only valid for independent xi cannot be di-
rectly applied, an extension of the CLT for mixing systems is
necessary �3�.

For physical and practical applications, the number N is
always finite, hence it is important to know what the finite-N
corrections are for a given dynamical system. This problem
can be solved for our example, the map T�x�=1−2x2, by
applying the general graph-theoretical methods developed in

�13,14�. Our final result is that for finite but large N the
probability density of y is given by

�y�y� =
1

��
e−y2
1 +

1
�N

y�3

2
− y2� + O� 1

N
� . �9�

This result is in excellent agreement with numerical experi-
ments �Fig. 1�.

We should mention at this point that the finite-N correc-
tions are nonuniversal, i.e., different mappings have different
finite-N corrections. For example, by applying the techniques
of �13,14� to the cubic map

xi+1 = 4xi
3 − 3xi, �10�

which has the same invariant density �5� as the logistic map
with a=2 but different higher-order correlations, we obtain in
leading order

�y�y� =
1

��
e−y2
1 +

1

N
� 1

12
y4 −

1

4
y2 +

1

16
� . �11�

Note that in this case the leading-order corrections are of
order 1 /N, rather than of order 1 /�N. Again our analytical
result is in good agreement with the numerics, see Fig. 2.

Apparently the finite-N corrections to the asymptotic
Gaussian behavior of dynamical systems satisfying a CLT
are nonuniversal and can be used to obtain more information
on the underlying deterministic dynamics. This is certainly
important from a general physical point of view if the dy-
namics underlying a CLT is a priori unknown.

We may also look at distributions of the variable y ob-
tained for “typical” parameter values in the chaotic regime of
the logistic map, such as a=1.7,1.8,1.9. A CLT has not been
rigorously proved in this case, but, nevertheless, we again
observe Gaussian limit behavior. This is shown in Fig. 3. It is
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FIG. 1. �Color online� Probability density of rescaled sums of
iterates of the logistic map with a=2 as given by Eq. �8�,
N=2�106 and N=100. The number of initial values contributing to
the histogram is nini=2�106, respectively nini=107. The solid lines
correspond to Eq. �9�.
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a well-known fact that for a�2 the average �x� does not
vanish anymore. The Gaussians observed in Fig. 3 have
smaller variance �2 as compared to the case a=2. This can
be understood in a quantitative way from Eq. �3�. The fits in
Fig. 3 show Gaussians with variance parameter �2 directly
determined from Eq. �3� using f�x�=x− �x� �the averages �¯�
are calculated as time averages�. Note that for a
=1.7,1.8,1.9 the correlation function is not �-correlated any-
more.

Next, let us investigate the behavior of deterministic dy-
namical systems where the conditions for a CLT are not sat-
isfied. As a particularly interesting example, we choose the
logistic map at the accumulation point of period doublings
�i.e., at the edge of chaos�. The corresponding parameter
value is denoted by ac. For a=ac the logistic map is not
sufficiently strongly mixing and a CLT is not valid. Still one
can ask the question if there is a universal limit distribution
for suitably rescaled sums of iterates. We investigated this
question numerically and looked at rescaled sums of the
form

y = N	�
i=1

N

�xi − �x�� . �12�

Equation �12� is a generalization of Eq. �8� with a more
general rescaling exponent 	. The notation �¯� means an
average over a large number N of iterations and a large num-
ber nini of randomly chosen initial values x1

�j�. Numerically
we calculate

�x� =
1

nini

1

N�
j=1

nini

�
i=1

N

xi
�j�. �13�

Due to the fact that the system is not necessarily ergodic
anymore, the average over initial conditions is an important
ingredient.

In our numerical experiment, a large number of initial
values x1 were randomly chosen and the corresponding val-
ues of the sum y were plotted in a histogram. We then looked
for a suitable rescaling exponent 	 where we have data col-
lapse, i.e., the same shape of the probability distributions
�y�y� of y if N is increased. Numerically we observe that, at
a=ac, this value is given by 	=1.5. The density of y is not
given by a Gaussian, as one would expect if a CLT is valid,
but well fitted by a q-Gaussian, i.e., a distribution of the form

�y�y� � eq
−
y2

ª

1

�1 + 
�q − 1�y2�1/�q−1� , �14�

where q and 
 are suitable parameters. We observe q
=1.75±0.03 �see Fig. 4�. The rescaling factor N	 in Eq. �12�
can be absorbed by simply calculating the variance �2 of the
unrescaled sum yª�i=1

N �xi− �x�� for a given N and then plot-
ting a histogram of y /�.

Interesting enough, the values of q and 	 that we observe
in our numerical experiments are independent of the order of
the maximum of the map considered. Indeed, if instead of
the logistic map �4� we iterate the more general map

xi+1 = 1 − a�xi�z, �15�

then at the critical point ac�z� of period doubling accumula-
tion the results are basically unchanged �see Fig. 5�.

Since at the critical point the dynamics of many different
maps converges to a dynamics given by the universal
Feigenbaum fixed point function �15�, our results for the
asymptotic probability distribution of y are universal: Entire
classes of critical quadratic maps will generate the same
q-Gaussian limit distribution. Our result is even more univer-
sal since there seems to be no dependence on the order z of
the maximum of the map. Thus we expect the q-Gaussian
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FIG. 2. �Color online� Probability density of rescaled sums of
iterates of the cubic map �10� for N=107 and N=10. The number of
initial values is nini=106, respectively nini=5�106. The solid lines
correspond to Eq. �11�.
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FIG. 3. �Color online� Probability density of rescaled sums of
iterates of the logistic map as given by Eq. �8� for a=1.7,1.8,1.9
and N=2�106, nini=106. The solid lines show Gaussians
e−y2/�2�2� /�2��2 with variance parameter �2 determined from Eq.
�3�.
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limit distribution with q�1.75 to be relevant for many dif-
ferent dynamical systems at the critical point.

The independence of z has also been established in a dif-
ferent context: In �16� it is shown that, for all values of z, the
relevant fixed point map describing period doubling bifurca-
tions �tangent bifurcations� is a specific q-exponential with
q=3 �q=2�.

The generalized central limit behavior of critical dynami-
cal systems observed in this paper may be of relevance for
more general classes of critical systems in physics as well.
For example, Caruso et al. �17� observe that the probability
distribution of energy differences of subsequent earthquakes
in the World Catalog and in Northern California is well fitted
by a q-Gaussian with q�1.75. Their model for this is based
on self-organized criticality and the Olami-Feder-Christensen
�OFC� model. We note that q-Gaussians with q�1.75 arise
naturally if the corresponding random variable consist of a
sum of strongly correlated contributions as generated by
critical dynamical systems. A somewhat similar result has
also been recently observed for Brazilian financial data: A
q-Gaussian with q�1.75 fits histograms of stock market in-

dex changes for a considerable range of time delays �see Fig.
6 of �18��.

To conclude, in this Rapid Communication we have ex-
plicitly calculated finite-N corrections to the CLT for some
examples of strongly mixing dynamical systems. For critical
systems at the edge of chaos, where a CLT is not valid any-
more due to strong correlations, we have shown that the
relevant limit distributions appear to be q-Gaussians with q
�1.75. This result is universal and independent of the order
of the maximum of the map under consideration. Our results
represent a kind of power-law generalization of the CLT,
which is relevant for entire classes of dynamical systems. An
analytical study of the present results at the edge of chaos
and of more general critical dynamical systems would be
very welcome. This might, in particular, enlighten the deep
reasons for the frequent occurrence of q-Gaussians in natu-
ral, artificial, and social complex systems.
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FIG. 4. �Color online� Probability density of the quantity y /� at
the critical point ac for z=2, N=214, and N=215.
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FIG. 5. �Color online� Probability density of the quantity y /� at
the critical point ac for z=1.75,2 ,3.

TIRNAKLI, BECK, AND TSALLIS PHYSICAL REVIEW E 75, 040106�R� �2007�

RAPID COMMUNICATIONS

040106-4


